Ex control System

Q.P. Code: 12595

3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- (2) Attemt any three questions from remaining questions.
- (3) Assume suitable data if necessary.
- 1. (a) Compare open loop and closed loop systems with suitable examples.
 - (b) Draw the step response for an underdamped second order system with damping ratio 0.2, 1, 1.2 respectively.
 - (c) The transfer function of a system is given by -

$$T(s) = \frac{k(s+6)}{s(s+2)(s+5)(s^2+7s+1^2)}$$

Determine (i) poles (ii) zeros (iii) Characteristic equation

- (d) Define Hurwitz stability Crieteria with its advantages and disadvantages. Give suitable example.
- 2. (a) Determine transfer function C(S) / RCS) of the system shown in fig.

TURN OVER

2

(b) using Mason's gain formula, find C(S)/RCS) of SFG shown in fig.

10

- 3. (a) Show th epole zero location and the unit step response of the following second 10 order control system -
 - (1) Underdamped
 - (2) Overdampsed
 - (3) Critically damped
 - (4) Undamped
 - (b) For the Network shown in fig obtain -

10

- (i) Transfer function
- (ii) State variable model

TURN OVER

GN-Con.:12102-14.

4. (a) Write the differential equation for the mechanical system shown in fig and explain 10 force voltage analgy.

(b) The open loop transfer function of a unity feedback system is given by

G(S) =
$$\frac{k(s+9)}{s(s^2+4s+11)}$$

Sketch the Root locus of the system.

5. (a) Sketch the polar plot for the open loop transfer function given by -

$$G(s) = \frac{1}{s^2(1+s)(1+2s)}$$

(b) A unity feedback system has

$$G(s) = \frac{40(s + 2)}{s(s + 1)(s + 5)}$$

Determine (i) Type of system

(ii) All error coefficients

(iii) Error for ramp I/P with magnitude 3.

6. (a) Sketch the bode plot for the following Transfer function.

 $G(s) = \frac{75(1+0.25)}{s(s^2+16s+100)}$

(b) What is Adaptive control? Explain any one of adaptive control methods.

(c) Explain controllability and observability.

5